Imre Lakatos (nonfiction): Difference between revisions

From Gnomon Chronicles
Jump to navigation Jump to search
(Created page with "[[]]'''Imre Lakatos''' (UK: /ˈlækətɒs/, US: /ˈlækətoʊs/; Hungarian: Lakatos Imre [ˈlɒkɒtoʃ ˈimrɛ]; November 9, 1922 – February 2, 1974) was a Hungarian philoso...")
 
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[]]'''Imre Lakatos''' (UK: /ˈlækətɒs/, US: /ˈlækətoʊs/; Hungarian: Lakatos Imre [ˈlɒkɒtoʃ ˈimrɛ]; November 9, 1922 – February 2, 1974) was a Hungarian philosopher of mathematics and science, known for his thesis of the fallibility of mathematics and its 'methodology of proofs and refutations' in its pre-axiomatic stages of development, and also for introducing the concept of the 'research programme' in his methodology of scientific research programmes.
[[File:Imre Lakatos.jpg|thumb|Imre Lakatos circa 1960s.]]'''Imre Lakatos''' (UK: /ˈlækətɒs/, US: /ˈlækətoʊs/; Hungarian: Lakatos Imre [ˈlɒkɒtoʃ ˈimrɛ]; November 9, 1922 – February 2, 1974) was a Hungarian philosopher of mathematics and science, known for his thesis of the fallibility of mathematics and its 'methodology of proofs and refutations' in its pre-axiomatic stages of development, and also for introducing the concept of the 'research programme' in his methodology of scientific research programmes.


Lakatos' philosophy of mathematics was inspired by both Hegel's and Marx's dialectic, by Karl Popper's theory of knowledge, and by the work of mathematician George Pólya.
Lakatos was born Imre (Avrum) Lipschitz to a Jewish family in Debrecen, Hungary in 1922. He received a degree in mathematics, physics, and philosophy from the University of Debrecen in 1944. In March 1944 the Germans invaded Hungary.  
The 1976 book Proofs and Refutations is based on the first three chapters of his four chapter 1961 doctoral thesis Essays in the logic of mathematical discovery. But its first chapter is Lakatos's own revision of its chapter 1 that was first published as Proofs and Refutations in four parts in 1963–4 in The British Journal for the Philosophy of Science. It is largely taken up by a fictional dialogue set in a mathematics class. The students are attempting to prove the formula for the Euler characteristic in algebraic topology, which is a theorem about the properties of polyhedra, namely that for all polyhedra the number of their Vertices minus the number of their Edges plus the number of their Faces is 2:  (V – E + F = 2). The dialogue is meant to represent the actual series of attempted proofs which mathematicians historically offered for the conjecture, only to be repeatedly refuted by counterexamples. Often the students paraphrase famous mathematicians such as Cauchy, as noted in Lakatos's extensive footnotes.


Lakatos termed the polyhedral counter examples to Euler's formula monsters and distinguished three ways of handling these objects: Firstly, monster-barring, by which means the theorem in question could not be applied to such objects. Secondly, monster-adjustment whereby by making a re-appraisal of the monster it could be made to obey the proposed theorem. Thirdly, exception handling, a further distinct process. Interestingly, these distinct strategies have been taken up in qualitative physics, where the terminology of monsters has been applied to apparent counter-examples, and the techniques of monster-barring and monster-adjustment recognized as approaches to the refinement of the analysis of a physical issue.
During the occupation, Lakatos avoided Nazi persecution of Jews by changing his name to Imre Molnár. His mother and grandmother died in Auschwitz. He changed his surname once again to Lakatos (Locksmith) in honor of Géza Lakatos.
 
He found himself on the losing side of internal arguments within the Hungarian communist party and was imprisoned on charges of revisionism from 1950 to 1953.
 
After his release, Lakatos returned to academic life, doing mathematical research and translating [[George Pólya (nonfiction)|George Pólya]]'s ''How to Solve It'' into Hungarian.
 
The 1976 book ''Proofs and Refutations'' is based on the first three chapters of his four chapter 1961 doctoral thesis ''Essays in the logic of mathematical discovery''. But its first chapter is Lakatos's own revision of its chapter 1 that was first published as ''Proofs and Refutations'' in four parts in 1963–4 in ''The British Journal for the Philosophy of Science''. It is largely taken up by a fictional dialogue set in a mathematics class. The students are attempting to prove the formula for the Euler characteristic in algebraic topology, which is a theorem about the properties of polyhedra, namely that for all polyhedra the number of their Vertices minus the number of their Edges plus the number of their Faces is 2:  (V – E + F = 2). The dialogue is meant to represent the actual series of attempted proofs which mathematicians historically offered for the conjecture, only to be repeatedly refuted by counterexamples. Often the students paraphrase famous mathematicians such as Cauchy, as noted in Lakatos's extensive footnotes.
 
Lakatos termed the polyhedral counter examples to Euler's formula ''monsters'' and distinguished three ways of handling these objects: Firstly, ''monster-barring'', by which means the theorem in question could not be applied to such objects. Secondly, ''monster-adjustment'' whereby by making a re-appraisal of the monster it could be made to obey the proposed theorem. Thirdly, ''exception handling'', a further distinct process. Interestingly, these distinct strategies have been taken up in qualitative physics, where the terminology of ''monsters'' has been applied to apparent counter-examples, and the techniques of ''monster-barring'' and ''monster-adjustment'' recognized as approaches to the refinement of the analysis of a physical issue.


What Lakatos tried to establish was that no theorem of informal mathematics is final or perfect. This means that we should not think that a theorem is ultimately true, only that no counterexample has yet been found. Once a counterexample, i.e. an entity contradicting/not explained by the theorem is found, we adjust the theorem, possibly extending the domain of its validity. This is a continuous way our knowledge accumulates, through the logic and process of proofs and refutations. (If axioms are given for a branch of mathematics, however, Lakatos claimed that proofs from those axioms were tautological, i.e. logically true.)
What Lakatos tried to establish was that no theorem of informal mathematics is final or perfect. This means that we should not think that a theorem is ultimately true, only that no counterexample has yet been found. Once a counterexample, i.e. an entity contradicting/not explained by the theorem is found, we adjust the theorem, possibly extending the domain of its validity. This is a continuous way our knowledge accumulates, through the logic and process of proofs and refutations. (If axioms are given for a branch of mathematics, however, Lakatos claimed that proofs from those axioms were tautological, i.e. logically true.)
Line 17: Line 24:
A Lakatosian research programme is based on a hard core of theoretical assumptions that cannot be abandoned or altered without abandoning the programme altogether. More modest and specific theories that are formulated in order to explain evidence that threatens the 'hard core' are termed auxiliary hypotheses. Auxiliary hypotheses are considered expendable by the adherents of the research programme—they may be altered or abandoned as empirical discoveries require in order to 'protect' the 'hard core'.
A Lakatosian research programme is based on a hard core of theoretical assumptions that cannot be abandoned or altered without abandoning the programme altogether. More modest and specific theories that are formulated in order to explain evidence that threatens the 'hard core' are termed auxiliary hypotheses. Auxiliary hypotheses are considered expendable by the adherents of the research programme—they may be altered or abandoned as empirical discoveries require in order to 'protect' the 'hard core'.


According to the demarcation criterion of pseudoscience originally proposed by Lakatos, a theory is pseudoscientific if it fails to make any novel predictions of previously unknown phenomena, in contrast with scientific theories, which predict novel fact(s). Progressive scientific theories are those which have their novel facts confirmed and degenerate scientific theories are those whose predictions of novel facts are refuted. As he put it: "A given fact is explained scientifically only if a new fact is predicted with it...." Lakatos's own key examples of pseudoscience were Ptolemaic astronomy, Immanuel Velikovsky's planetary cosmogony, Freudian psychoanalysis, 20th century Soviet Marxism, Lysenko's biology, [[Niels Bohr (nonfiction)|Niels Bohr]]'s Quantum Mechanics post-1924, astrology, psychiatry, sociology, neoclassical economics, and Darwin's theory.
According to the demarcation criterion of pseudoscience originally proposed by Lakatos, a theory is pseudoscientific if it fails to make any novel predictions of previously unknown phenomena, in contrast with scientific theories, which predict novel fact(s). Progressive scientific theories are those which have their novel facts confirmed and degenerate scientific theories are those whose predictions of novel facts are refuted. As he put it: "A given fact is explained scientifically only if a new fact is predicted with it...." Lakatos's own key examples of pseudoscience were Ptolemaic astronomy, Immanuel Velikovsky's planetary cosmogony, Freudian psychoanalysis, 20th century Soviet Marxism, Lysenko's biology, [[Niels Bohr (nonfiction)|Niels Bohr]]'s [[Quantum mechanics (nonfiction)|quantum mechanics]] post-1924, astrology, psychiatry, sociology, neoclassical economics, and Darwin's theory.


== In the News ==
== In the News ==
Line 25: Line 32:


== Fiction cross-reference ==
== Fiction cross-reference ==
* [[Crimes against mathematical constants]]
* [[Gnomon algorithm]]
* [[Mathematics]]


== Nonfiction cross-reference ==
== Nonfiction cross-reference ==


* [[George Pólya (nonfiction)]]
* [[Mathematician (nonfiction)]]
* [[Mathematician (nonfiction)]]
* [[Niels Bohr (nonfiction)]]


External links:
External links:


* [https://en.wikipedia.org/wiki/Imre_Lakatos Imre Lakatos] @ Wikipedia
* [https://en.wikipedia.org/wiki/Imre_Lakatos Imre Lakatos] @ Wikipedia
 
* [http://www.lse.ac.uk/philosophy/lakatos/ Lakatos] @ London School of Economics


[[Category:Nonfiction (nonfiction)]]
[[Category:Nonfiction (nonfiction)]]

Latest revision as of 16:21, 20 January 2018

Imre Lakatos circa 1960s.

Imre Lakatos (UK: /ˈlækətɒs/, US: /ˈlækətoʊs/; Hungarian: Lakatos Imre [ˈlɒkɒtoʃ ˈimrɛ]; November 9, 1922 – February 2, 1974) was a Hungarian philosopher of mathematics and science, known for his thesis of the fallibility of mathematics and its 'methodology of proofs and refutations' in its pre-axiomatic stages of development, and also for introducing the concept of the 'research programme' in his methodology of scientific research programmes.

Lakatos was born Imre (Avrum) Lipschitz to a Jewish family in Debrecen, Hungary in 1922. He received a degree in mathematics, physics, and philosophy from the University of Debrecen in 1944. In March 1944 the Germans invaded Hungary.

During the occupation, Lakatos avoided Nazi persecution of Jews by changing his name to Imre Molnár. His mother and grandmother died in Auschwitz. He changed his surname once again to Lakatos (Locksmith) in honor of Géza Lakatos.

He found himself on the losing side of internal arguments within the Hungarian communist party and was imprisoned on charges of revisionism from 1950 to 1953.

After his release, Lakatos returned to academic life, doing mathematical research and translating George Pólya's How to Solve It into Hungarian.

The 1976 book Proofs and Refutations is based on the first three chapters of his four chapter 1961 doctoral thesis Essays in the logic of mathematical discovery. But its first chapter is Lakatos's own revision of its chapter 1 that was first published as Proofs and Refutations in four parts in 1963–4 in The British Journal for the Philosophy of Science. It is largely taken up by a fictional dialogue set in a mathematics class. The students are attempting to prove the formula for the Euler characteristic in algebraic topology, which is a theorem about the properties of polyhedra, namely that for all polyhedra the number of their Vertices minus the number of their Edges plus the number of their Faces is 2: (V – E + F = 2). The dialogue is meant to represent the actual series of attempted proofs which mathematicians historically offered for the conjecture, only to be repeatedly refuted by counterexamples. Often the students paraphrase famous mathematicians such as Cauchy, as noted in Lakatos's extensive footnotes.

Lakatos termed the polyhedral counter examples to Euler's formula monsters and distinguished three ways of handling these objects: Firstly, monster-barring, by which means the theorem in question could not be applied to such objects. Secondly, monster-adjustment whereby by making a re-appraisal of the monster it could be made to obey the proposed theorem. Thirdly, exception handling, a further distinct process. Interestingly, these distinct strategies have been taken up in qualitative physics, where the terminology of monsters has been applied to apparent counter-examples, and the techniques of monster-barring and monster-adjustment recognized as approaches to the refinement of the analysis of a physical issue.

What Lakatos tried to establish was that no theorem of informal mathematics is final or perfect. This means that we should not think that a theorem is ultimately true, only that no counterexample has yet been found. Once a counterexample, i.e. an entity contradicting/not explained by the theorem is found, we adjust the theorem, possibly extending the domain of its validity. This is a continuous way our knowledge accumulates, through the logic and process of proofs and refutations. (If axioms are given for a branch of mathematics, however, Lakatos claimed that proofs from those axioms were tautological, i.e. logically true.)

Lakatos proposed an account of mathematical knowledge based on the idea of heuristics. In Proofs and Refutations the concept of 'heuristic' was not well developed, although Lakatos gave several basic rules for finding proofs and counterexamples to conjectures. He thought that mathematical 'thought experiments' are a valid way to discover mathematical conjectures and proofs, and sometimes called his philosophy 'quasi-empiricism'.

However, he also conceived of the mathematical community as carrying on a kind of dialectic to decide which mathematical proofs are valid and which are not. Therefore, he fundamentally disagreed with the 'formalist' conception of proof which prevailed in Frege's and Russell's logicism, which defines proof simply in terms of formal validity. On its first publication as a paper in The British Journal for the Philosophy of Science in 1963–4, Proofs and Refutations became highly influential on new work in the philosophy of mathematics, although few agreed with Lakatos' strong disapproval of formal proof. Before his death he had been planning to return to the philosophy of mathematics and apply his theory of research programmes to it. Lakatos, Worrall and Zahar use Henri Poincaré (1893) to answer one of the major problems perceived by critics, namely that the pattern of mathematical research depicted in Proofs and Refutations does not faithfully represent most of the actual activity of contemporary mathematicians.

Lakatos's second major contribution to the philosophy of science was his model of the 'research programme', which he formulated in an attempt to resolve the perceived conflict between Popper's falsificationism and the revolutionary structure of science described by Kuhn. Popper's standard of falsificationism was widely taken to imply that a theory should be abandoned as soon as any evidence appears to challenge it, while Kuhn's descriptions of scientific activity were taken to imply that science was most constructive when it upheld a system of popular, or 'normal', theories, despite anomalies. Lakatos' model of the research programme aims to combine Popper's adherence to empirical validity with Kuhn's appreciation for conventional consistency.

A Lakatosian research programme is based on a hard core of theoretical assumptions that cannot be abandoned or altered without abandoning the programme altogether. More modest and specific theories that are formulated in order to explain evidence that threatens the 'hard core' are termed auxiliary hypotheses. Auxiliary hypotheses are considered expendable by the adherents of the research programme—they may be altered or abandoned as empirical discoveries require in order to 'protect' the 'hard core'.

According to the demarcation criterion of pseudoscience originally proposed by Lakatos, a theory is pseudoscientific if it fails to make any novel predictions of previously unknown phenomena, in contrast with scientific theories, which predict novel fact(s). Progressive scientific theories are those which have their novel facts confirmed and degenerate scientific theories are those whose predictions of novel facts are refuted. As he put it: "A given fact is explained scientifically only if a new fact is predicted with it...." Lakatos's own key examples of pseudoscience were Ptolemaic astronomy, Immanuel Velikovsky's planetary cosmogony, Freudian psychoanalysis, 20th century Soviet Marxism, Lysenko's biology, Niels Bohr's quantum mechanics post-1924, astrology, psychiatry, sociology, neoclassical economics, and Darwin's theory.

In the News

Fiction cross-reference

Nonfiction cross-reference

External links: