Factoring out Horse Shit theory: Difference between revisions

From Gnomon Chronicles
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
== ==
== ==


"Factoring out Horse Shit theory" was detected and partially decrypted on the afternoon of Thursday, 4 February 2021, by amateur mathematician and [[APTO]] consulting rebus theorist [[Karl Jones (nonfiction)|Karl Jones]].   
"Factoring out Horse Shit theory" was detected and partially decrypted on the afternoon of Thursday, 4 February 2021, by amateur mathematician and [[APTO]] consulting rebus theorist [[Karl Jones (nonfiction)|Karl Jones]] in a [https://twitter.com/GnomonChronicl1/status/1357475521077121035 post on Twitter].   


APTO subsequently convened the [[Gnomon Chronicles Rebus Authority]] as a licensed [[transdimensional corporation]] responsible for the safety and integrity of rebuses.
APTO subsequently convened the [[Gnomon Chronicles Rebus Authority]] as a licensed [[transdimensional corporation]] responsible for the safety and integrity of rebuses.

Revision as of 16:50, 4 February 2021

Factoring out Horse Shit theory.

"Factoring out Horse Shit theory" is a poem by Karl Jones.

Factoring out Horse Shit theory

x = Horse Shoe theory - Horse Shit theory + Horseshoe Map theory.

Solve for x.

"Factoring out Horse Shit theory" was detected and partially decrypted on the afternoon of Thursday, 4 February 2021, by amateur mathematician and APTO consulting rebus theorist Karl Jones in a post on Twitter.

APTO subsequently convened the Gnomon Chronicles Rebus Authority as a licensed transdimensional corporation responsible for the safety and integrity of rebuses.

In the News

Fiction cross-reference

Nonfiction cross-reference

External links

  • Post Twitter
  • Horseshoe map - In the mathematics of chaos theory, a horseshoe map is any member of a class of chaotic maps of the square into itself. It is a core example in the study of dynamical systems. The map was introduced by Stephen Smale while studying the behavior of the orbits of the van der Pol oscillator. The action of the map is defined geometrically by squishing the square, then stretching the result into a long strip, and finally folding the strip into the shape of a horseshoe.