Theory of computation (nonfiction): Difference between revisions

From Gnomon Chronicles
Jump to navigation Jump to search
(Created page with "In theoretical computer science and mathematics, the '''theory of computation''' is the branch that deals with how efficiently problems can be sol...")
 
No edit summary
Line 1: Line 1:
In theoretical computer science and [[Mathematics (nonfiction)|mathematics]], the '''theory of computation''' is the branch that deals with how efficiently problems can be solved on a model of computation, using an [[Algorithm (nonfiction)|algorithm]].
[[File:Turing machine.png|thumb|An artistic representation of a [[Turing machine (nonfiction)|Turing machine]]. Turing machines are frequently used as theoretical models for computing.]]In theoretical computer science and [[Mathematics (nonfiction)|mathematics]], the '''theory of computation''' is the branch that deals with how efficiently problems can be solved on a model of computation, using an [[Algorithm (nonfiction)|algorithm]].


The field is divided into three major branches: automata theory and language, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
The field is divided into three major branches: automata theory and language, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".

Revision as of 14:40, 15 November 2017

An artistic representation of a Turing machine. Turing machines are frequently used as theoretical models for computing.

In theoretical computer science and mathematics, the theory of computation is the branch that deals with how efficiently problems can be solved on a model of computation, using an algorithm.

The field is divided into three major branches: automata theory and language, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".

In order to perform a rigorous study of computation, computer scientists work with a mathematical abstraction of computers called a model of computation.

There are several models in use; the most commonly examined is the Turing machine. Computer scientists study the Turing machine because it is simple to formulate, can be analyzed and used to prove results, and because it represents what many consider the most powerful possible "reasonable" model of computation (see Church–Turing thesis).

It might seem that the potentially infinite memory capacity is an unrealizable attribute, but any decidable problem solved by a Turing machine will always require only a finite amount of memory. So in principle, any problem that can be solved (decided) by a Turing machine can be solved by a computer that has a finite amount of memory.

In the News

Fiction cross-reference

Nonfiction cross-reference

External links: