Toroidal polyhedron (nonfiction): Difference between revisions

From Gnomon Chronicles
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
In [[Geometry (nonfiction)|geometry]], a '''toroidal polyhedron''' is a polyhedron which is also a toroid (a g-holed torus), having a topological genus of 1 or greater.
[[File:Toroidal polyhedron from a net of quadrilateral faces 6x4.png|thumb|A polyhedral torus can be constructed to approximate a torus surface, from a net of quadrilateral faces, like this 6x4 example.]]In [[Geometry (nonfiction)|geometry]], a '''toroidal polyhedron''' is a polyhedron which is also a toroid (a g-holed torus), having a topological genus of 1 or greater.


Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and the link of each vertex should be a single cycle that alternates between the edges and polygons that meet at that vertex. For toroidal polyhedra, this manifold is an orientable surface. Some authors restrict the phrase "toroidal polyhedra" to mean more specifically polyhedra topologically equivalent to the (genus 1) torus.
Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and the link of each vertex should be a single cycle that alternates between the edges and polygons that meet at that vertex. For toroidal polyhedra, this manifold is an orientable surface. Some authors restrict the phrase "toroidal polyhedra" to mean more specifically polyhedra topologically equivalent to the (genus 1) torus.
Line 33: Line 33:
* [https://en.wikipedia.org/wiki/Toroidal_polyhedron Toroidal polyhedron] @ Wikipedia
* [https://en.wikipedia.org/wiki/Toroidal_polyhedron Toroidal polyhedron] @ Wikipedia


Attribution:


[[Category:Nonfiction (nonfiction)]]
[[Category:Nonfiction (nonfiction)]]
[[Category:Mathematics (nonfiction)]]
[[Category:Mathematics (nonfiction)]]

Latest revision as of 20:13, 25 October 2018

A polyhedral torus can be constructed to approximate a torus surface, from a net of quadrilateral faces, like this 6x4 example.

In geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a g-holed torus), having a topological genus of 1 or greater.

Toroidal polyhedra are defined as collections of polygons that meet at their edges and vertices, forming a manifold as they do. That is, each edge should be shared by exactly two polygons, and the link of each vertex should be a single cycle that alternates between the edges and polygons that meet at that vertex. For toroidal polyhedra, this manifold is an orientable surface. Some authors restrict the phrase "toroidal polyhedra" to mean more specifically polyhedra topologically equivalent to the (genus 1) torus.

In this area, it is important to distinguish embedded toroidal polyhedra, whose faces are flat polygons in three-dimensional Euclidean space that do not cross themselves or each other, from abstract polyhedra, topological surfaces without any specified geometric realization. Intermediate between these two extremes are polyhedra formed by geometric polygons or star polygons in Euclidean space that are allowed to cross each other.

In all of these cases the toroidal nature of a polyhedron can be verified by its orientability and by its Euler characteristic being non-positive.

Two of the simplest possible embedded toroidal polyhedra are the Császár and Szilassi polyhedra.

Notable examples include the Császár and Szilassi polyhedra.

In the News

Fiction cross-reference

Nonfiction cross-reference

External links: