Search for extraterrestrial intelligence (nonfiction): Difference between revisions
(Created page with "File:Arecibo_observatory.jpg|thumb|Arecibo Observatory in Puerto Rico with its 300 m (980 ft) dish, one of the world's largest filled-aperture (i.e. full dish) radio telesco...") |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 34: | Line 34: | ||
<gallery> | <gallery> | ||
File:Atmospheric electromagnetic opacity.svg|link=Water hole (radio) (nonfiction)|The waterhole, or water hole, is an especially quiet band of the electromagnetic spectrum between 1,420 and 1,666 megahertz, corresponding to wavelengths of 21 and 18 centimeters respectively. It is a popular observing frequency used by radio telescopes in radio astronomy. | |||
</gallery> | </gallery> | ||
== Fiction cross-reference == | == Fiction cross-reference == | ||
* [[Crimes against | * [[Crimes against astronomical constants]] | ||
* [[ENIAC (SETI)]] | |||
== Nonfiction cross-reference == | == Nonfiction cross-reference == | ||
Line 50: | Line 52: | ||
External links: | External links: | ||
* [https://en.wikipedia.org/wiki/ | * [https://en.wikipedia.org/wiki/Search_for_extraterrestrial_intelligence Search for extraterrestrial intelligence] @ Wikipedia | ||
Latest revision as of 15:34, 1 December 2017
The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other planets.
In 1896, Nikola Tesla suggested that an extreme version of his wireless electrical transmission system could be used to contact beings on Mars. In 1899, while conducting experiments at his Colorado Springs experimental station, he thought he had detected a signal from that planet since an odd repetitive static signal seemed to cut off when Mars set in the night sky. Analysis of Tesla's research has ranged from suggestions that Tesla detected nothing, he simply misunderstood the new technology he was working with, to claims that Tesla may have been observing signals from Marconi's European radio experiments and even that he could have picked up naturally occurring Jovian plasma torus signals.
In the early 1900s, Guglielmo Marconi, Lord Kelvin and David Peck Todd also stated their belief that radio could be used to contact Martians, with Marconi stating that his stations had also picked up potential Martian signals.
On August 21–23, 1924, Mars entered an opposition closer to Earth than at any time in the century before or the next 80 years. In the United States, a "National Radio Silence Day" was promoted during a 36-hour period from August 21–23, with all radios quiet for five minutes on the hour, every hour. At the United States Naval Observatory, a radio receiver was lifted 3 kilometres (1.9 miles) above the ground in a dirigible tuned to a wavelength between 8 and 9 km, using a "radio-camera" developed by Amherst College and Charles Francis Jenkins. The program was led by David Peck Todd with the military assistance of Admiral Edward W. Eberle (Chief of Naval Operations), with William F. Friedman (chief cryptographer of the United States Army), assigned to translate any potential Martian messages.
A 1959 paper by Philip Morrison and Giuseppe Cocconi first pointed out the possibility of searching the microwave spectrum, and proposed frequencies and a set of initial targets.
In 1960, Cornell University astronomer Frank Drake performed the first modern SETI experiment, named "Project Ozma", after the Queen of Oz in L. Frank Baum's fantasy books. Drake used a radio telescope 26 metres (85 ft) in diameter at Green Bank, West Virginia, to examine the stars Tau Ceti and Epsilon Eridani near the 1.420 gigahertz marker frequency, a region of the radio spectrum dubbed the "water hole" due to its proximity to the hydrogen and hydroxyl radical spectral lines. A 400 kilohertz band around the marker frequency was scanned, using a single-channel receiver with a bandwidth of 100 hertz. He found nothing of interest.
Soviet scientists took a strong interest in SETI during the 1960s and performed a number of searches with omnidirectional antennas in the hope of picking up powerful radio signals. Soviet astronomer Iosif Shklovsky wrote the pioneering book in the field, Universe, Life, Intelligence (1962), which was expanded upon by American astronomer Carl Sagan as the best-selling book Intelligent Life in the Universe (1966).
In the March 1955 issue of Scientific American, John D. Kraus described an idea to scan the cosmos for natural radio signals using a flat-plane radio telescope equipped with a parabolic reflector. Within two years, his concept was approved for construction by Ohio State University; the Ohio State University Radio Observatory telescope, also known as "Big Ear", began operation in 1963. Later, it began the world's first continuous SETI program, called the Ohio State University SETI program.
In 1971, NASA funded a SETI study that involved Drake, Bernard M. Oliver of Hewlett-Packard Corporation, and others. The resulting report proposed the construction of an Earth-based radio telescope array with 1,500 dishes known as "Project Cyclops". The price tag for the Cyclops array was US$10 billion. Cyclops was not built, but the report formed the basis of much SETI work that followed.
The Ohio State SETI program gained fame on August 15, 1977, when Jerry Ehman, a project volunteer, witnessed a startlingly strong signal received by the telescope. He quickly circled the indication on a printout and scribbled the exclamation "Wow!" in the margin. Dubbed the Wow! signal, it is considered by some to be the best candidate for a radio signal from an artificial, extraterrestrial source ever discovered, but it has not been detected again in several additional searches.
In 1980, Carl Sagan, Bruce Murray, and Louis Friedman founded the U.S. Planetary Society, partly as a vehicle for SETI studies.
In the early 1980s, Harvard University physicist Paul Horowitz took the next step and proposed the design of a spectrum analyzer specifically intended to search for SETI transmissions. Traditional desktop spectrum analyzers were of little use for this job, as they sampled frequencies using banks of analog filters and so were restricted in the number of channels they could acquire. However, modern integrated-circuit digital signal processing (DSP) technology could be used to build autocorrelation receivers to check far more channels. This work led in 1981 to a portable spectrum analyzer named "Suitcase SETI" that had a capacity of 131,000 narrow band channels. After field tests that lasted into 1982, Suitcase SETI was put into use in 1983 with the 26-meter (85 ft) Harvard/Smithsonian radio telescope at Oak Ridge Observatory in Harvard, Massachusetts. This project was named "Sentinel" and continued into 1985. It was followed by projects META and BETA.
In 1978, the NASA SETI program had been heavily criticized by Senator William Proxmire, and funding for SETI research was removed from the NASA budget by Congress in 1981; however, funding was restored in 1982, after Carl Sagan talked with Proxmire and convinced him of the program's value. In 1992, the U.S. government funded an operational SETI program, in the form of the NASA Microwave Observing Program (MOP). MOP was planned as a long-term effort to conduct a general survey of the sky and also carry out targeted searches of 800 specific nearby stars. MOP was to be performed by radio antennas associated with the NASA Deep Space Network, as well as the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory at Green Bank, West Virginia and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The signals were to be analyzed by spectrum analyzers, each with a capacity of 15 million channels. These spectrum analyzers could be grouped together to obtain greater capacity. Those used in the targeted search had a bandwidth of 1 hertz per channel, while those used in the sky survey had a bandwidth of 30 hertz per channel.
MOP drew the attention of the United States Congress, where the program was ridiculed and canceled one year after its start. SETI advocates continued without government funding, and in 1995 the nonprofit SETI Institute of Mountain View, California resurrected the MOP program under the name of Project "Phoenix", backed by private sources of funding. Project Phoenix, under the direction of Jill Tarter, is a continuation of the targeted search program from MOP and studies roughly 1,000 nearby Sun-like stars. From 1995 through March 2004, Phoenix conducted observations at the 64-meter (210 ft) Parkes radio telescope in Australia, the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory in Green Bank, West Virginia, and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The project observed the equivalent of 800 stars over the available channels in the frequency range from 1200 to 3000 MHz. The search was sensitive enough to pick up transmitters with 1 GW EIRP to a distance of about 200 light-years. According to Prof. Tarter, in 2012 it costs around "$2 million per year to keep SETI research going at the SETI Institute" and approximately 10 times that to support "all kinds of SETI activity around the world."
Many international radio telescopes are currently being used for radio SETI searches, including the Low Frequency Array (LOFAR) in Europe, the Murchison Widefield Array (MWA) in Australia, and the Lovell Telescope in the United Kingdom.
Scientific investigation began shortly after the advent of radio in the early 1900s, and focused international efforts have been going on since the 1980s. In 2015 Stephen Hawking and Russian billionaire Yuri Milner announced a well-funded effort called the Breakthrough Initiatives.
In the News
Fiction cross-reference
Nonfiction cross-reference
- Bernard M. Oliver (nonfiction)
- Radio source SHGb02+14a (nonfiction)
- Wow! signal (nonfiction)
- Schelling point (nonfiction)
- Nikola Tesla (nonfiction)
External links:
- Search for extraterrestrial intelligence @ Wikipedia