Burnside problem (nonfiction): Difference between revisions
No edit summary |
No edit summary |
||
Line 27: | Line 27: | ||
* [[Igor Shafarevich (nonfiction)]] | * [[Igor Shafarevich (nonfiction)]] | ||
External links | == External links == | ||
* [https://en.wikipedia.org/wiki/Group_theory Group theory] @ Wikipedia | * [https://en.wikipedia.org/wiki/Group_theory Group theory] @ Wikipedia |
Latest revision as of 09:39, 11 January 2022
The Burnside problem, posed by William Burnside in 1902 and one of the oldest and most influential questions in group theory, asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many variants that differ in the additional conditions imposed on the orders of the group elements.
History
Initial work pointed towards the affirmative answer. For example, if a group G is finitely generated and the order of each element of G is a divisor of 4, then G is finite. Moreover, A. I. Kostrikin was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the restricted Burnside problem for the case of prime exponent. (Later, in 1989, Efim Zelmanov was able to solve the restricted Burnside problem for an arbitrary exponent.) Issai Schur had showed in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible n × n complex matrices was finite; he used this theorem to prove the Jordan–Schur theorem.
Nevertheless, the general answer to Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968, Pyotr Novikov and Sergei Adian's supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381. In 1982, A. Yu. Ol'shanskii found some striking counterexamples for sufficiently large odd exponents (greater than 1010), and supplied a considerably simpler proof based on geometric ideas.
The case of even exponents turned out to be much harder to settle. In 1992, S. V. Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 (detailed proofs were published in 1994 and occupied some 300 pages). Later joint work of Ol'shanskii and Ivanov established a negative solution to an analogue of Burnside problem for hyperbolic groups, provided the exponent is sufficiently large. By contrast, when the exponent is small and different from 2,3,4 and 6, very little is known.
In the News
Fiction cross-reference
Nonfiction cross-reference
- William Burnside (nonfiction)
- Evgeny Golod (nonfiction)
- Mathematics (nonfiction)
- Igor Shafarevich (nonfiction)
External links
- Group theory @ Wikipedia