W. T. Tutte (nonfiction): Difference between revisions
(Created page with "[[|thumb|William Thomas Tutte.]]William Thomas "Bill" Tutte OC FRS FRSC (/tʌt/; 14 May 1917 – 2 May 2002) was a British codebreaker and mathematician. During the Second Wor...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[|thumb|William Thomas Tutte.]]William Thomas "Bill" Tutte OC FRS FRSC (/tʌt/; 14 May 1917 – 2 May 2002) was a British codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi German cipher system which was used for top-secret communications within the Wehrmacht High Command. The high-level, strategic nature of the intelligence obtained from Tutte's crucial breakthrough, in the bulk decrypting of Lorenz-enciphered messages specifically, contributed greatly, and perhaps even decisively, to the defeat of Nazi Germany. He also had a number of significant mathematical accomplishments, including foundation work in the fields of graph theory and matroid theory. | [[File:W._T._Tutte.jpg|thumb|William Thomas Tutte.]]William Thomas "Bill" Tutte OC FRS FRSC (/tʌt/; 14 May 1917 – 2 May 2002) was a British codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi German cipher system which was used for top-secret communications within the Wehrmacht High Command. The high-level, strategic nature of the intelligence obtained from Tutte's crucial breakthrough, in the bulk decrypting of Lorenz-enciphered messages specifically, contributed greatly, and perhaps even decisively, to the defeat of Nazi Germany. He also had a number of significant mathematical accomplishments, including foundation work in the fields of graph theory and matroid theory. | ||
Tutte's research in the field of graph theory proved to be of remarkable importance. At a time when graph theory was still a primitive subject, Tutte commenced the study of matroids and developed them into a theory by expanding from the work that Hassler Whitney had first developed around the mid 1930s. Even though Tutte's contributions to graph theory have been influential to modern graph theory and many of his theorems have been used to keep making advances in the field, most of his terminology was not in agreement with their conventional usage and thus his terminology is not used by graph theorists today. "Tutte advanced graph theory from a subject with one text (D. Kőnig's) toward its present extremely active state." | Tutte's research in the field of graph theory proved to be of remarkable importance. At a time when graph theory was still a primitive subject, Tutte commenced the study of matroids and developed them into a theory by expanding from the work that Hassler Whitney had first developed around the mid 1930s. Even though Tutte's contributions to graph theory have been influential to modern graph theory and many of his theorems have been used to keep making advances in the field, most of his terminology was not in agreement with their conventional usage and thus his terminology is not used by graph theorists today. "Tutte advanced graph theory from a subject with one text (D. Kőnig's) toward its present extremely active state." |
Revision as of 19:22, 30 April 2018
William Thomas "Bill" Tutte OC FRS FRSC (/tʌt/; 14 May 1917 – 2 May 2002) was a British codebreaker and mathematician. During the Second World War, he made a brilliant and fundamental advance in cryptanalysis of the Lorenz cipher, a major Nazi German cipher system which was used for top-secret communications within the Wehrmacht High Command. The high-level, strategic nature of the intelligence obtained from Tutte's crucial breakthrough, in the bulk decrypting of Lorenz-enciphered messages specifically, contributed greatly, and perhaps even decisively, to the defeat of Nazi Germany. He also had a number of significant mathematical accomplishments, including foundation work in the fields of graph theory and matroid theory.
Tutte's research in the field of graph theory proved to be of remarkable importance. At a time when graph theory was still a primitive subject, Tutte commenced the study of matroids and developed them into a theory by expanding from the work that Hassler Whitney had first developed around the mid 1930s. Even though Tutte's contributions to graph theory have been influential to modern graph theory and many of his theorems have been used to keep making advances in the field, most of his terminology was not in agreement with their conventional usage and thus his terminology is not used by graph theorists today. "Tutte advanced graph theory from a subject with one text (D. Kőnig's) toward its present extremely active state."