Degeneracy (nonfiction): Difference between revisions

From Gnomon Chronicles
Jump to navigation Jump to search
(Created page with "In mathematics, a '''degenerate case''' is a limiting case in which an element of a class of objects is qualitatively different from the rest of t...")
 
No edit summary
Line 12: Line 12:


<gallery>
<gallery>
File:Galileo_E_pur_si_muove.jpg|link=Galileo Galileo|Physicist and crime-fighter [[Galileo Galilei]], imprisoned on trumped-up charges, uses nail to scratch the equation ''E pur si muove'' on dungeon wall; in the process, he discovers a deliberately concealed [[Gnomon algorithm function]] which proves his innocence.  Although [[Galileo Galilei|Galileo]]'s accusation that the [[Gnomon algorithm|function]] was stolen and concealed by the [[Forbidden Ratio]] is widely believed to be true, no proof has emerged that the [[Forbidden Ratio|Ratio]] or its degenerate cases were involved.   
File:Galileo_E_pur_si_muove.jpg|link=Galileo Galilei|Physicist and crime-fighter [[Galileo Galilei]], imprisoned on trumped-up charges, uses nail to scratch the equation ''E pur si muove'' on dungeon wall; in the process, he discovers a deliberately concealed [[Gnomon algorithm function]] which proves his innocence.  Although [[Galileo Galilei|Galileo]]'s accusation that the [[Gnomon algorithm|function]] was stolen and concealed by the [[Forbidden Ratio]] is widely believed to be true, no proof has emerged that the [[Forbidden Ratio|Ratio]] or its degenerate cases were involved.   
</gallery>
</gallery>



Revision as of 09:32, 22 April 2018

In mathematics, a degenerate case is a limiting case in which an element of a class of objects is qualitatively different from the rest of the class and hence belongs to another, usually simpler, class. Degeneracy is the condition of being a degenerate case.

The definitions of many classes of composite or structured objects include (often implicitly) inequalities. For example, the angles and the side lengths of a triangle are supposed to be positive. The limiting cases, where one or several of these inequalities become equalities, are degeneracies. In the case of triangles, one has a degenerate triangle if at least one side length or angle is zero.

Often, the degenerate cases are the exceptional cases where changes to the usual dimension or the cardinality of the object (or of some part of it) occur. For example, a triangle is an object of dimension two, and a degenerate triangle is contained in a line, and its dimension is thus one. Similarly, the solution set of a system of equations that depends on parameters generally has a fixed cardinality and dimension, but cardinality and/or dimension may be different for some exceptional values, called degenerate cases. In such a degenerate case, the solution set is said to be degenerate.

For some classes of composite objects, the degenerate cases depend on the properties that are specifically studied. In particular, the class of objects may often be defined or characterized by systems of equations. Commonly, a given class of objects may be defined by several different systems of equations, and these different systems of equations may lead to different degenerate cases, while characterizing the same non-degenerate cases. This may be the reason for which there is no general definition of degeneracy, although the concept is widely used, and defined, if needed, in each specific situation.

A degenerate case thus has special features, which makes it non-generic. However, not all non-generic cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. Frequently, degenerate cases correspond to singularities either in the object or in some configuration space. For example, a conic section is degenerate if and only if it has singular.

In the News

Fiction cross-reference

Nonfiction cross-reference

External links:

  • [Degeneracy (mathematics) Degeneracy (mathematics)] @ Wikipedia